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I. Introduction

DEGREE of controllability (DOC) represents how control-
lable a given system is, qualitatively or quantitatively. DOC has
been dealt with in the literature since Kalman et al. [1] first discussed
it. Hughes and Skelton [2] proposed a controllability norm that gives
detailed information on the rank of the controllability matrix of a
system. Hamdan and Nayfeh [3] extended the Popov—Belevitch—
Hautus test to define measures of modal controllability. Tarokh [4]
introduced controllability measures related to frequency-domain
characteristics such as zeros and residues. Viswanathan et al. [5]
proposed the minimum of 2-norms of initial conditions that can be
returned to zero with a control input for which the infinite norm is not
greater than 1 for the degree of controllability. Though it can be
viewed as a parameter that quantitatively describes the controllability
of the system, its closed-form expression is not available and requires
an approximation to obtain its value. Miiller and Weber [6] presented
three candidates of DOC based on the scalar measures of the
controllability Grammian matrix for a linear continuous system. The
measures are related to the minimum input energy that is required to
regulate a system from initial conditions in a finite time interval. If a
system requires smaller input energy for its regulation from initial
conditions than others, it can be considered more controllable. Roh
and Park [7] proposed a novel concept titled modal degree of
controllability (MDOC) that represents the relative performance of a
specific candidate set with a predetermined number of actuators,
compared with the performance achievable with the full set of
actuators. The MDOC is defined as a ratio between the two minimum
input energies required to regulate a system from initial modal
disturbances to zero with a specific candidate set and the full set of
actuators. However, these works for DOC do not take the effect of
external disturbance into account directly.

Naturally, research on the measures for disturbance rejection has
followed. The degree of controllability for disturbance rejection is of
interest because disturbance rejection is often the main objective of
process control [8]. Some plants have better built-in disturbance-
rejection capabilities than others; that is, their performance with
respect to disturbance rejection is better. Unquestionably, it has been
known for a long time that disturbance rejection is an important
property of a plant. Stanley et al. [9] introduced a dimensionless
measure for disturbance that they called relative disturbance gain,
and it can be calculated from steady-state information only for a
square plant G. Morari [10] took account of the magnitude of the
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inputs required for disturbance rejection and argued that the
minimum singular value of the plant may provide a useful measure.
In addition, he qualified the effect of model/plant mismatch on control
quality. However, he did notuse any information about the disturbance
model. Morari at al. [11] considered the allowed magnitude of
disturbances to achieve feasible operation in the steady state and
denoted their measure as the resilience index. However, the resilience
index does not take into account the different possible directions of the
disturbances, but only their size. They also used singular values to
bound the magnitude of disturbances under constraints on the
manipulated variables. Shimizu and Matsubara [12] discussed the
direction of combined disturbances in the frequency domain using the
singular value decomposition. Skogestad and Morari [13] proposed a
similar analysis, but also considered the direction of an individual
disturbance. They stressed that in multivariable systems, some
disturbances may be difficult to reject if they are in the undesirable
direction compared with the direction of the plant and to quantify this,
they introduced the disturbance condition number. However, they
analyzed the direction of disturbances for a square transfer matrix G,
and the measure depends only on the direction of the disturbance, but
not on its magnitude. Skogestad and Hovd [14] and Hovd and
Skogestad [15] argued that for decentralized control, one should use
the closed-loop disturbance gain when evaluating the effect of
disturbances. The measures described previously have a significant
drawback in that the number of input variables is at least equal to the
number of outputs to be controlled.

Luyben [16] stressed that the choice of the control structure may
strongly influence the sensitivity to disturbances and pointed out that
in many processes there is an eigenstructure (i.e., an intrinsically self-
regulating control structure). Cao and Rossiter [17] also proposed the
input-disturbance alignment (IDA). The IDA is defined as the
projection norm of the transfer function from a scalar disturbance to
output g, on the range of the transfer function from input to output G.
It represents how aligned g, is with G. However, the IDA only takes
into account the disturbance direction without considering the
magnitude of that disturbance. To overcome such a limitation of IDA,
Cao et al. [18] proposed the worst-case input-disturbance gain
(WCIDG) and the input-disturbance gain deviation (IDGD). When
the least-squares input required to keep the output norm as close as
possible to zero is yielded as u = G* G ,d, the WCIDG is defined as
the norm of the ith row of G* G, in the worst case. In addition, the
IDGD is the maximum gain from a disturbance to the ith least-
squares input deviation that is defined as the difference between the
least-squares input u = GTG,d and least-squares solution after
eliminating the ith input channel. Thus, input having a relatively
large WCIDG or IDGD value implies that this input plays an
important role in disturbance rejection. Actually, the WCIDG and
IDGD can be useful measures for input screening tools. Though they
can be employed to determine the locations of actuators, they are not
appropriate to represent the capabilities of the disturbance rejection
of a given system. Most of the existing measures defined in the
frequency domain have the advantage of representing the frequency-
dependent capabilities for disturbance rejection in a theoretical point
of view. Although they can evaluate the dynamic effects of distur-
bances in the system, the measure values at steady state are used in the
literature. This results from the drawback that even if the measures
can show the capabilities for disturbance rejection at each frequency
component, they cannot have a representative value corresponding to
the frequency spectrum. Mirza and Niekerk [19] used the size of the
disturbance-sensitivity Grammian for the closed-loop system to
indicate the effect of a disturbance. Based on the fact that a large
disturbance-sensitivity Grammian will indicate that the disturbance
has a large effect on the system, they determined the optimal actuator
locations.
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In this Note, a new measure to represent the capabilities of distur-
bance rejection will be proposed. The new measure does not impose
any restrictions on the amount of input and output. In addition,
because the proposed measure is calculated from open-loop systems
to qualify the intrinsic disturbance-rejection capability of the given
systems, it does not depend on controller gains or control strategy. If
the controller is determined, it can be augmented into the system, of
course. The proposed measure can also consider the effect of distur-
bance magnitude on the disturbance rejection. The measure will be
derived simply by using a controllability Grammian and a distur-
bance-sensitivity Grammian for the stochastic disturbance and will
represent the capabilities for disturbance rejection quantitatively
with a physically meaningful value: control energy.

II. Controllability and Disturbance
Sensitivity Grammian

Controllability and disturbance-sensitivity Grammians will be
discussed in this section. Let us consider a linear time-invariant
system:

x(1) = Ax(t) + Bu(t) + Dw(r) (1)

where x(¢) € R”, u(f) € R’, and w(r) € R! are the state, control
input and disturbance vectors, respectively, and A, B, and D are
constant matrices with appropriate dimensions. The disturbance is
assumed to be Gaussian white noise with the known correlation
function

R,(x) = Elw(®)w’(r + 7)] = 5,,8(7) (2)
and mean
= Ew(n] =0 3)
Let ®(¢, t,) denote the state transition matrix associated with A. The
controllability Grammian is defined as

t
W(r) = / O(t,7)BB'D'(t,t)dr forsome 0 <t<oo (4)
0

The controllability Grammian can be calculated by solving the
following differential equation:

W(1) = AW(r) + W()A' + BB (5)

Similarly, the disturbance-sensitivity Grammian can be defined,

t
Z(t) = / ®(t,7)DS,D'D'(t,t)dr forsome 0 <t < oo (6)
t

satisfying the following differential equation:

(1) = AX(t) + (DA’ + DS, D’ (7)

III. Measure for Degree of Controllability
for Disturbance Rejection

A. Expected Minimum-Energy Transfer

The measure to be proposed here follows the ideas of Kalman et al.
[1]. Even though they did not consider the effect of external
disturbances, we are interested in rejecting disturbances with sto-
chastic properties. Thus, the expected minimum transfer energy is
considered to be the measure for the disturbance-rejection capability
of the given system in the form of Eq. (1):

T
Minimize p = E[/ u’(t)u(t)dt] )
0

subject to x(0) = 0 and x(7') = 0. The initial condition is assumed to
be zero because we focus on external disturbance alone without
considering the stabilizing performance from the given initial
conditions. The solution can be given by
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T
u(t) = —B’eA'(T_’)W(T)_I/ AT Dw(s)ds )
0

for some 0 <t < T. Readers interested in deriving the solution
should see the details in [20]. The input covariance matrix can be
found by substituting the solution of control input (9) into the
definition of the covariance matrix:

R, (1) = E[u(d)u'(1)] = E[B/eA'(T_’) WoN(T) /T eAT=9) Dy(s)ds
0

T
. / w(p)D X T-PdpW.! (T)ef“T*f)B] (10)
0

Rearranging terms and moving the expected value with the integrals
yields

T T
Ru(t):B/eA/(T")W‘](T)/ / AT DE[w(s)w(p)]
0 0
x D'e’T-Pdpds - W, (T)er "B (11)

Then using Eq. (2) and the definition of the Dirac delta function,
Eq. (11) reduces to

T
Ru(t) = BN T-1) Wc_l (T) / EA(T_S)DSWD/eA’(T_‘) ds
0
- WN(T)er 9B a2

Using the solution of Eq. (6), the input covariance matrix can be
expressed simply as

R, (1) =BT IW-NT)S(THW-(T)er T8  (13)

As mentioned previously, the expected total transfer energy is the
proposed measure representing the degree of controllability for
disturbance rejection. The expected total energy can be calculated by
integrating Eq. (13):

/T E[u' (H)u(t)]dt = tr{/T E[u(t)u’(t)]dt}
0 0
= tr{ / ! B AT 0W-{(T)S(T)W! (T)eA(T")Bdt} (14)
0

where tr{-} means the summation of the diagonal terms of {-}.
Applying the property of the trace and rearranging terms, Eq. (14)
yields

T
p= tr{ / W-l(T)E(T)W—l(T)eA(T-f>BB’eA’<T—'>dr}
0

= tr{W—l (T)E(T)W—] (T) /T eA(T—t)BB/eA’(T_t)dt}
0
= (W (D)MW (T)W(T)} = w{W-(T) - £(T)} (15)

As shown in Eq. (15), the measure can be calculated by solving the
two differential equations, and their solutions are in the form of a
Grammian matrix. As mentioned, the measure has a physically
meaningful value of input energy with absolute units. Thus, it cannot
only quantitatively represent the degree of controllability for the
disturbance rejection of a given system, but it can also compare the
capabilities for the disturbance rejection of systems with different
setups.

B. Measure at Steady State

As shown in Eq. (15), the solutions of two differential equations
depend on the final time 7. As a result, the proposed measure will
depend on the time 7', which, to a large extent, has to be selected
arbitrarily. To eliminate this dependency of the measure on 7', we
consider steady-state solutions of Eqs. (5) and (6), satisfying
Egs. (16) and (17) for asymptotically stable systems:
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a) Matched disturbance b) Unmatched disturbance
Fig. 1 Three-degree-of-freedom mass-spring-damper system.

AW + WA + BB =0 (16)

AT + XA + DS, D = a7

Equations (16) and (17) are Lyapunov equations. Therefore, the
measure for disturbance rejection at steady state can be expressed as

p= /Oo E[ (Hu(n)]dt = tr{W~' - £} (18)
0

The measure can be solved easily by solving the two Lyapunov
equations. Because the closed-form solutions for the Grammians
exist, the method is not computationally intensive.

IV. Numerical Example

To demonstrate the usefulness of the proposed measure, a
numerical example will be given. Let us consider a mass-spring-
damper system, as shown in Fig. 1. To evaluate the proposed
measure, we will consider the cases when the disturbance is matched
and unmatched. Next, we will identify the variation of the measure
according to the variation of a model parameter.

A. Mass-Spring-Damper System

It should be noted that because the number of output variables is
more than that of input variables, the existing measures suggested in
the frequency domain cannot be employed. To evaluate the perfor-
mance of the proposed measure, we will consider two cases. One is
when the disturbance is matched and the other is when it is
unmatched. First, we will deal with the case of the matched distur-
bance. The state-space representation of the given model can be
expressed as

x=Ax + Bu + Dw (19)
where
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
A= -2 1 0o -2 1 (U B= 0
1 -2 1 1 -2 1 1
0 1 -1 0 1 -1 0

Then x(f) € R® and u(f) € R! are the state and control input,
respectively; w(f) € R! is a disturbance with covariance
Elw()w' ()] = 1; and A, B, and D are constant matrices with
appropriate dimensions. The system is controllable and asymptoti-
cally stable. We first study the case when the matching condition is
satisfied; that is, the disturbance is in the range of input matrix B. For
the matched disturbance, the matrix D is given by

D=[0 0 0 0 1 O] (20)
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The system is depicted in Fig. 1a. Using Egs. (16-18), the value of the
proposed measure is yielded:

p=tr{Z- W'l =6 (21)

Next, we will calculate the measure for the case of the unmatched
disturbance. Intuitively, it can be expected that disturbance rejection
for an unmatched disturbance is more difficult than that for the
matched disturbance. Thus, the measure for an unmatched distur-
bance possibly has a larger value than that for the matched
disturbance. For the unmatched disturbance, the matrix D is given by

=[0 00 0 0 1] 22)

The system with an unmatched disturbance is depicted in Fig. 1b.
The proposed measure is

p=tr{S -W '} =234 (23)

From Eq. (21) and (23) it is found that the measure for as unmatched
disturbance has about a 40 times larger value than the one for a
matched disturbance. Because the proposed measure means the input
energy, it is known that rejecting the effect of an unmatched
disturbance requires about 40 times more control energy than the
matched case. The DOC for the disturbance rejection of the system
would be significantly degraded when an unmatched disturbance
exists.

B. Parameter Variation

To validate the performance of the proposed measure, we will
perform further analysis on the same example. We will change the
spring constant k; from zero to infinity while the unmatched
disturbance is excited to the system, as shown in Fig. 1b. The results
from changing the spring constant k; are shown in Table 1. From
Table 1, it is revealed that if the spring constant is very small, the
capability for rejecting disturbance decreases. As the spring constant
becomes larger, on the other hand, the measure becomes smaller.
That means that the capability for disturbance rejection improves.
Those results are expected from the physical understanding. The
small spring constant means that second mass m, and third mass m3
are almost not linked to each other. Thus, the control input applied to
mass m, cannot affect the movement of mass mj. Accordingly, the
disturbance cannot be rejected easily. When the spring constant k5 is
very large, the two masses m, and m; are connected tightly to each
other. Therefore, the disturbance can be considered as a matched
disturbance. Accordingly, the measure converges to that of the
matched case of Eq. (21) as the spring constant increases to infinity.

Next, let us consider the effect of final time 7 on the proposed
measure. The convergent trends of the proposed measure with
respect to time are shown in Fig. 2. Because of the limited scale of the
figure, only four cases in which k3 = 0.1, 1, lel and 1e2(N/m) are
drawn in the figure.

It is known from the results that the magnitudes of input energies
early on are much larger than at later times. This means that when one
wants to reject the effect of a disturbance in a short time, the degree of
controllability for disturbance rejection becomes significantly
degraded. It is also shown that as the spring constant coefficient k3
becomes larger, the proposed measure can be approximated by the
steady-state value for smaller final time 7. This results from the fact
that as the disturbance-rejection capabilities of the system improve,
the convergent rate of the proposed measure becomes faster. Thus,
the convergent rate can also be a useful measure for disturbance-
rejection capabilities.

Table 1 Proposed measure according to parameter variation

Spring constant k5, Nm™' 0 001
Proposed measure 00

2.7¢7

0.1 1 lel le2 le3 o0
4.7¢3 234 126 6.5 6.05 6
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Fig. 2 Convergent rate of the proposed measure.

V. Conclusions

In this Note, we proposed a measure for the degree of con-
trollability for disturbance rejection. The measure has a physical
meaning of the average minimum energy required to make the state
variable zero at a final time. For this measure, white noise with a zero
mean is considered as an external disturbance. The approach depends
on computation of the controllability Grammian and the disturbance-
sensitivity Grammian. Those Grammian matrices can be obtained by
solving two Lyapunov equations if the system is asymptotically
stable and the final time is extended to infinity. Therefore, the compu-
tational simplicity is another advantage of the proposed measure. To
demonstrate the usefulness of the proposed measure, we applied it to
a simple 3-degree-of-freedom mass-spring-damper system. After
considering matched and unmatched disturbances, respectively, and
changing the parameter of spring constant ks, it was shown that the
proposed measure agrees well with physical interpretation. In
addition, it was possible to compare the systems with totally different
setups in terms of disturbance rejection, because the measure has an
absolute unit of input energy. Further, this measure can be employed

to the problem of determining optimal actuator locations for good
disturbance rejection.
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